Information Science and Engineering Lab

We perform teaching and research in machine learning strategies for the pattern analysis of various kinds of data. This comprises statistical models for clustering, graphical models for network inference and algorithmic methods to efficiently find these structures in the data.

Contact Info
CAB F 61.1
Universitaetstrasse 6,
8092 Zurich
Schweiz

+41 44 632 64 96

Follow Us

Information Science and Engineering Lab

We perform teaching and research in machine learning strategies for the pattern analysis of various kinds of data. This comprises statistical models for clustering, graphical models for network inference and algorithmic methods to efficiently find these structures in the data.

Contact Info
CAB F 61.1
Universitaetstrasse 6,
8092 Zurich
Schweiz

+41 44 632 64 96

Follow Us

Publications - page 4

Robust optimization in the presence of uncertainty: A generic approach

Joachim M. Buhmann, Alexey Gronskiy, Matúš Mihalák, Tobias Pröger, Rastislav Šrámek, Peter Widmayer,

Journal of Computer and System Sciences, 94

DOI: 10.3929/ethz-b-000225634      Research Collection

We propose a novel approach for optimization under uncertainty. Our approach does not assume any particular noise model behind the measurements, and only requires two typical instances. We first propose a measure of similarity of instances (with respect to a given objective). Based on this measure, we then choose a solution randomly among all solutions that are near-optimum for both instances. The exact notion of near-optimum is intertwined with the proposed similarity measure. Our similarity measure also allows us to...

Posterior agreement for large parameter-rich optimization problems

Joachim M. Buhmann, Julien Dumazert, Alexey Gronskiy, Wojciech Szpankowski,

Theoretical Computer Science, 745

DOI: 10.3929/ethz-b-000287900      Research Collection

Pipeline validation for connectivity-based cortex parcellation

Nico S. Gorbach, Marc Tittgemeyer, Joachim M. Buhmann,

NeuroImage, 181

Research Collection

Optimal DR-Submodular Maximization and Applications to Provable Mean Field Inference

An Bian, Joachim M. Buhmann, Andreas Krause,

arXiv,

Research Collection

Non-monotone continuous DR-submodular maximization: structure and algorithms

An Bian, Kfir Y. Levy, Andreas Krause, Joachim M. Buhmann,

31st Annual Conference on Neural Information Processing Systems (NIPS 2017), 1

Research Collection

Free Energy Asymptotics for Problems with Weak Solution Dependencies

Alexey Gronskiy, Joachim M. Buhmann, Wojciech Szpankowski,

IEEE International Symposium on Information Theory (ISIT 2018),

Research Collection

Efficient and flexible inference for stochastic systems

Stefan Bauer, Nico S. Gorbach, Djordje Miladinovic, Joachim M. Buhmann,

31st Annual Conference on Neural Information Processing Systems (NIPS 2017), 10

Research Collection

Digitalisierung der Medizin: Konsequenzen für die Ausbildung

Joachim Buhmann, Jürg Felix, Thomas Gächter, Tobias Kowatsch, Roger Lehmann, Nicola von Lutterotti, Kuno Schedler, Johann Steurer, Christian Wolfrum,

Schweizerische Ärztezeitung, 99

DOI: 10.3929/ethz-b-000296863      Research Collection

Die «Digitalisierung der Medizin» weckt grosse Hoffnungen auf eine effizientere und zunehmend bessere Medizin. Begriffe wie «Digitalisierung» und «künstliche Intelligenz» erzeugen zugleich aber auch Ängste. Dabei ist die Digitalisierung, die Erfassung und Speicherung von Daten in digitaler Form, nichts grundlegend Neues; neu hingegen sind die algorithmischen Fortschritte, kombiniert mit der enormen Leistungsfähigkeit moderner Computersysteme, aber auch die kostengünstige Speicherung und Übertragung grosser Datenmengen. Diese Errungenschaften haben das Potential, die Patientenversorgung merklich zu verbessern.

Der Mensch muss ein neues Selbstverständnis finden

Joachim M. Buhmann,

,

Research Collection

Data-driven fiber tractography with neural networks

Viktor Wegmayr, Giuliari Giuliar, Stefan Holdener, Joachim M. Buhmann,

IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018),

Research Collection