Information Science and Engineering Lab

We perform teaching and research in machine learning strategies for the pattern analysis of various kinds of data. This comprises statistical models for clustering, graphical models for network inference and algorithmic methods to efficiently find these structures in the data.

Contact Info
CAB F 61.1
Universitaetstrasse 6,
8092 Zurich
Schweiz

+41 44 632 64 96

Follow Us

Information Science and Engineering Lab

We perform teaching and research in machine learning strategies for the pattern analysis of various kinds of data. This comprises statistical models for clustering, graphical models for network inference and algorithmic methods to efficiently find these structures in the data.

Contact Info
CAB F 61.1
Universitaetstrasse 6,
8092 Zurich
Schweiz

+41 44 632 64 96

Follow Us

Publications - page 10

Combining Multiple Expert Annotations Using Semi-Supervised Learning And Graph Cuts For Crohn’s Disease Segmentation

Dwarikanath Mahapatra, Peter J. Schüffler, Jeroen A.W. Tielbeek, Carl A.J. Puylaert, Jesica C. Makanyanga, Alex Menys, Rado Andriantsimiavona, Jaap Stoker, Stuart A. Taylor, Franciscus M. Vos, Joachim M. Buhmann,

6th MICCAI Workshop on Abdominal Imaging: Computational and Clinical Applications, 8676

Research Collection

Active learning based segmentation of Crohn's disease using principles of visual saliency

Dwarikanath Mahapatra, Peter J. Schüffler, Jeroen A. W. Tielbeek, Jesica C. Makanyanga, Jaap Stoker, Stuart A. Taylor, Franciscus M. Vos, Joachim M. Buhmann,

2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI),

Research Collection

Weakly supervised semantic segmentation of Crohn's disease tissues from abdominal MRI

Dwarikanath Mahapatra, Alexander Vezhnevets, Peter J. Schüffler, Jeroen A.W. Tielbeek, Franciscus M. Vos, Joachim M. Buhmann,

IEEE 10th International Symposium on Biomedical Imaging (ISBI 2013),

Research Collection

Variational Bayesian mixed-effects inference for classification studies

Kay H Brodersen, Jean Daunizeau, Christoph Mathys, Justin R. Chumbley, Joachim M. Buhmann, Klaas Stephan,

NeuroImage, 76

Research Collection

Towards a Framework for Modelling Engagement Dynamics in Multiple Learning Domains

Tanja Käser, Gian- Marco Baschera, Alberto Giovanni Busetto, Severin Klingler, Barbara Solenthaler, Joachim M. Buhmann, Markus Gross,

15th International Conference on Artificial Intelligence in Education (AIED) 2011, 22

Research Collection

TMARKER

Peter J. Schüffler, Thomas J. Fuchs, Cheng S. Ong, Peter J. Wild, Niels J. Rupp, Joachim M. Buhmann,

Journal of Pathology Informatics, 4

Research Collection

TMARKER: a robust and free software toolkit for histopathological cell counting and immunohistochemical staining estimation

Peter J. Schüffler, Niels J. Rupp, Cheng Soon Ong, Joachim M. Buhmann, Thomas J. Fuchs, Peter J. Wild,

97. Jahrestagung der Deutschen Gesellschaft für Pathologie e.V., 34

Research Collection

Semi-Supervised and Active Learning for Automatic Segmentation of Crohn’s Disease

Dwarikanath Mahapatra, Peter J. Schüffler, Jeroen A.W. Tielbeek, Franciscus M. Vos, Joachim M. Buhmann,

16th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI 2013), 8150

Research Collection

SIMBAD

Joachim M. Buhmann,

Advances in computer vision and pattern recognition,

Research Collection

Role Mining with Probabilistic Models

Mario Frank, Joachim M. Buhman, David Basin,

ACM Transactions on Information and System Security, 15

Research Collection