Information Science and Engineering Lab

We perform teaching and research in machine learning strategies for the pattern analysis of various kinds of data. This comprises statistical models for clustering, graphical models for network inference and algorithmic methods to efficiently find these structures in the data.

Contact Info
CAB F 61.1
Universitaetstrasse 6,
8092 Zurich
Schweiz

+41 44 632 64 96

Follow Us

Information Science and Engineering Lab

We perform teaching and research in machine learning strategies for the pattern analysis of various kinds of data. This comprises statistical models for clustering, graphical models for network inference and algorithmic methods to efficiently find these structures in the data.

Contact Info
CAB F 61.1
Universitaetstrasse 6,
8092 Zurich
Schweiz

+41 44 632 64 96

Follow Us

Conference Paper - page 5

Sparse feature selection by information theory

Guangyao Zhou, Stuart Geman, Joachim M. Buhmann,

2014 IEEE International Symposium on Information Theory,

Research Collection

Semi-automatic Crohn’s Disease Severity Estimation on MR Imaging

Peter J. Schüffler, Dwarikanath Mahapatra, Robiel Naziroglu, Zhang Li, Carl A.J. Puylaert, Rado Andriantsimiavona, Franciscus M. Vos, Doug A. Pendsé, C. Yung Nio, Jaap Stoker, Stuart A. Taylor, Joachim M. Buhmann,

6th MICCAI Workshop on Abdominal Imaging: Computational and Clinical Applications (ABDI 2014), 8676

Research Collection

How informative are Minimum Spanning Tree algorithms?

Alexey Gronskiy, Joachim M. Buhmann,

2014 IEEE International Symposium on Information Theory, ISIT,

Research Collection

Free Energy Rates for a Class of Very Noisy Optimization Problems

Joachim M. Buhmann, Alexey Gronskiy, Wojciech Szpankowski,

25th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms, AofA 2014, BA

Research Collection

Fast and Robust Least Squares Estimation in Corrupted Linear Models

Brian McWilliams, Gabriel Krummenacher, Mario Lucic, Joachim M. Buhmann,

28th Annual Conference on Neural Information Processing Systems 2014, 27

Research Collection

Correlated random features for fast semi-supervised learning

Brian McWilliams, David Balduzzi, Joachim M. Buhmann,

27th Annual Conference on Neural Information Processing Systems (NIPS 2013),

Research Collection

Convolutional Decision Trees for Feature Learning and Segmentation

Dmitry Laptev, Joachim M. Buhmann,

36th German Conference on Pattern Recognition (GCPR 2014), 8753

Research Collection

Combining Multiple Expert Annotations Using Semi-Supervised Learning And Graph Cuts For Crohn’s Disease Segmentation

Dwarikanath Mahapatra, Peter J. Schüffler, Jeroen A.W. Tielbeek, Carl A.J. Puylaert, Jesica C. Makanyanga, Alex Menys, Rado Andriantsimiavona, Jaap Stoker, Stuart A. Taylor, Franciscus M. Vos, Joachim M. Buhmann,

6th MICCAI Workshop on Abdominal Imaging: Computational and Clinical Applications, 8676

Research Collection

Active learning based segmentation of Crohn's disease using principles of visual saliency

Dwarikanath Mahapatra, Peter J. Schüffler, Jeroen A. W. Tielbeek, Jesica C. Makanyanga, Jaap Stoker, Stuart A. Taylor, Franciscus M. Vos, Joachim M. Buhmann,

2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI),

Research Collection

Weakly supervised semantic segmentation of Crohn's disease tissues from abdominal MRI

Dwarikanath Mahapatra, Alexander Vezhnevets, Peter J. Schüffler, Jeroen A.W. Tielbeek, Franciscus M. Vos, Joachim M. Buhmann,

IEEE 10th International Symposium on Biomedical Imaging (ISBI 2013),

Research Collection